6月23日 贾仲孝教授学术报告(数学与统计学院)

来源:数学行政作者:时间:2023-06-16浏览:278设置

报 告 人:贾仲孝 教授

报告题目:A cross-product free Jacobi--Davidson type method for computing a partial generalized singular value decomposition of a large matrix pair

报告时间:2023年06月23日(周五)上午9:30—10:30

报告地点:静远楼204学术报告厅

主办单位:数学与统计学院、数学研究院、科学技术研究院

报告人简介:

        贾仲孝,1993年获得德国比勒菲尔德大学博士学位,清华大学数学科学系二级教授,第六届国际青年数值分析家--Leslie Fox奖获得者(年龄不超过31岁),国家“百千万人才工程”入选者(1999),清华大学数学科学系学术委员会副主任(2009—2021),2010年度“何梁何利奖”数学力学专业组评委,中国工业与应用数学学会(CSIAM)第五和第六届常务理事(2008.9—2012.8,2012.8—2016.8),第七和第八届中国计算数学学会常务理事(2006.10—2014.10),北京数学会第十一和十二届副理事长(2013.12—2021.12),中国工业与应用数学学会(CSIAM)监事会监事(2020.1—2021.10),北京数学会第十三届监事会监事长(2021.12—2026.12)。主要研究领域:数值线性代数和科学计算。在代数特征值问题、奇异值分解和广义奇异值分解问题、离散不适定问题和反问题的正则化理论和数值解法等领域做出了系统性的、有国际影响的重要研究成果,所提出的精化投影方法被公认为是求解大规模矩阵特征值问题和奇异值分解问题的三类投影方法之一。对于非对称情形的特征值问题,首次建立了这三类方法的普适性收敛性理论。国际计算数学界权威Stewart的经典专著“Matrix Algorithms: Vol. II Eigensystems, SIAM, Philadelphia, 2001”(470页)和国际著名计算数学家van der Vorst的专著“Computational Methods for Large Eigenvalue Problems, North-Holland (Elsevier), 2002”(177页)分别用10页多和4页多的篇幅系统描述和讨论贾仲孝的精化投影方法。在Inverse Problems,Mathematics of Computation, Numerische Mathematik, SIAM Journal on Matrix Analysis and Applications, SIAM Journal on Optimization, SIAM Journal on Scientific Computing等国际顶尖和著名知名杂志上发表论文70篇,研究工作被广泛引用,引发了大量的后续研究。论文被40个国家和地区的700多名专家和研究人员在17部经典著作、专著和教材,包括Golub & van Loan的Matrix Computations第三、第四版等,及600余篇论文中引用逾1200余篇次。

报告摘要:

        A cross-product free (CPF) Jacobi--Davidson (JD) type method is proposed to compute a partial generalized singular value decomposition (GSVD) of a large regular matrix pair $\{A,B\}$, called CPF-JDGSVD. It implicitly solves the mathematically equivalent generalized eigenvalue problem of the cross-product matrix pair $\{A^TA,B^TB\}$ using the Rayleigh--Ritz projection method but does not form the cross-product matrices explicitly, and thus avoids the possible accuracy loss of the computed generalized singular values and generalized singular vectors. The method is an inner-outer iteration method, where the expansion of the right searching subspace forms the inner iterations that approximately solve the correction equations involved and the outer iterations extract approximate GSVD components with respect to the subspaces. A convergence result is established for the outer iterations, compact bounds are derived for the condition numbers of the correction equations, and the least solution accuracy requirements on the inner iterations are found, which can maximize the overall efficiency of CPF-JDGSVD as much as possible. Based on them, practical stopping criteria are designed for the inner iterations. A thick-restart CPF-JDGSVD algorithm with deflation and purgation is developed to compute several GSVD components of $\{A,B\}$ associated with the generalized singular values closest to a given target $\tau$. Numerical experiments illustrate the efficiency of the algorithm.

 



返回原图
/